
In conclusion,  let  us note that  the method p roposed  can be modified.  Thus,  if the outer  given t e m p e r a -  
ture  v a r i e s  sufficiently smoothly during a long t ime ,  then there  is eve ry  foundation to consider  that  the r e l a -  
t ionship (19) r e m a i n s  valid in this interval .  The p rob lem can then be solved by par t i t ioning T into a number  of 
f iner  secti0r~s which will be the computa t ion  s t eps ,  and the value of the t e m p e r a t u r e ,  obtained in the p rev ious  in-  

te rva l ,  jus t  for  the value T = 1, will  be used  when going ove r  to the next  value of h3m . In the ca se  mentioned,  
such an approach  is  m o r e  efficient.  

t 
Z 

T(z,  t) 
X(z, t ) ,  a ( z ,  t) 

hm(t) 
H 
L 

7 
w~ 
W0 

N O T A T I O N  

is the t ime ;  
is the coordinate;  
is the t e m p e r a t u r e ;  
a re  the coefficients  of t he rma l  conductivity and t h e r m a l  diffusivi ty,  r e spec t ive ly ;  
a re  the coord ina tes  of the p h a s e - i n t e r f a c e  posit ion; 
is the lower  boundary coordinate;  
is the heat  of the phase  t rans i t ion;  
is the volume weight of the soil ;  
is the given moi s tu re  dis t r ibut ion in the soil;  
is the exper imenta l ly  de te rmined  quali ty of mois tu re  which does not f r e eze  at 0~ 
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SEIV~I-ANALYTICAL ALGORITHN~ F O R  THE A P P R O X I M A T E  

S O L U T I O N  O F  A N O N S T A T I O N A R Y  I N V E R S E  P R O B L E M  O F  

DIFFUSION ON THE BASIS OF A DIRECT METHOD OF 

SOLUTION, LINEAR PROGRAMMING, AND 

REGULARIZA TION METHODS 

P.  I .  B a l k  a n d  T .  V.  B a l k  UDC 536.24.02 

Some analyt ical  solutions of the d i rec t  p rob lem of diffusion are  p resen ted  for  infinite bodies.  
The d i rec t  solutions cons t ruc ted  a re  used in a lgor i thms  for  the approx imate  solution of the :aon- 
s ta t ionary  inverse  diffusion p rob lem.  

Resul t s  d i rec t ly  concerning the p r o c e s s  of diffusion sca t t e r ing  of a substance are  elucidated below. How- 
e v e r ,  because  of the analogy between the t h e r m a l  conduction and d i f f u s i o n p r o c e s s e s ,  the r e su l t s  obtained a r e  
au tomat ica l ly  c a r r i e d  over  to the contiguous thermal -conduct iv i ty  p rob l em.  

Let  0 ~  and 0xyz be the combined Car te s i an  r e f e r e n c e  syst~rns with the ~ and z axes  d i rec ted  downward. 

Let  us consider  the f r ee  diffusion p r o c e s s  in a ha l f - space  (in the absence  of sources  and sinks):  

y = {(~, n, ~) : i~t < r162 l~I < ~ ,  ~ >~ o}. (1) 
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At the t ime r = r 0 preceding the beginning of the p roces s  of diffusion sca t te r ing  of a substance in V, the con- 
centra t ion dis tr ibut ion C O of the substance is independent of ~ and subject  to the law C O = F(~, 7/). There  is no 
mixing of the substance in the ve r t i ca l  direct ion.  The diffusion, which initially encloses  the hor izon ~ = 0 and is 
propagated into the depths with t ime ,  will p roceed  on each of the hor izons  ~ = h with its constant diffusion 
coefficient  D (h) , so that  for  the whole ha l f - space  V 

D=D(~, ~)---- { O, ~<~(h) 
D (h), t > / t  ~h)' ~ = h 6 [0, oo). (2) 

% 

Here  T(h) is the t ime a~ which the diffusion p r o c e s s  r eaches  the hor izon ~ = h, where  r(~ = T 0. 

The p r oc e s s  desc r ibed  is cha rac t e r i s t i c  to the format ion  of diffusion au reo les ,  developed on planar and 
slightly convex slopes under  r a r e  and nonfer rous  meta l  deposits .  The aureo les  mentioned originate by means 
of chaotic d isp lacement  ( f ree  diffusion) into the enclosing waste rock  mate r ia l  fo rmed  f rom the upper hor izons  
of the bedrock  because  of the effect  of di f ferent  surface  physical  reagents  thereon  [1, 2]. 

In terpre ta t ion  of the a u r e o l e s ,  which consis ts  of predict ing the distr ibution C0(~) of some chemical  e l e -  
ment  in early, deep bedrock  according to known es t ima tes  of i ts distr ibution C(x) in the aureole  and of separa te  
values  of C 0) of the des i red  function C0(~) (known f rom the r e su l t s  of assaying outcrops) ,  reduces  in the one-di -  
mensional  case  F = F(~) to solving the in tegral  equation 

1 i C o ( ~ ) e x p [  (x--~)~ l d  ~ (3) 
C ( x ,  ~ )  - ] /-~-~ ~ - - "  2 o  ~ 

under  the conditions 

Co (~i) = C"~, ~ 6 (-- ~ ,  r i = 0, n. (4) 

Hence,  the diffusion sca t te r ing  p a r a m e t e r  a = 2 ~ T  is an unknown quantity. 

Le t  us note that in p rac t ice  it  is not r equ i red  to obtain the solution on the whole axis but only in some in- 
t e rva l  (a, 5). 

The problem (3)-(4) is of definite theore t ica l  in t e res t ,  since the major i ty  of developments  are  devoted to 
inverse  boundary-value  problems  [3-6], while a lgor i thms to de te rmine  the coefficients of the diffusion (heat 
conduction) equation, jus t  like the preceding  concentra t ion and t empera tu re  distr ibut ions over  thei r  running 
f ie lds ,  have as ye t  been studied in l e ss  detail .  We l imi t  ourse lves  to the case of giving the quantity C0(~) at 
one point: 

C0(~0) = C (~ ~_0E(--oo, ~) .  (5) 

Le t  us f i r s t  consider  the solution of the d i r ec t  problem (3) for  fixed a. An analytical  method for seeking 
C(x, a) approximately  is given in [7], based on a polynomial approximation of the field C0(0: 

L 

C~ (~) = Z A~ ,~')(D, *~) 6 ~I'(~) = {~}~'=0. (6) 
i = 0  

Let  us mention the two model  c lasses  $(2) and r of functions which are  sufficiently convenient for  the approx-  
imation of continuous and piecewise-cont inuous dis t r ibut ions and which admit of solvabili ty of the r ight  side 
of (3) in e l emen ta ry  functions: 

~(2) ----- {1, {sin t~}i$N-, {c0si~}i$N+}, 

N- = {2m-- 1}~', N + ---- (2m}~", (7) 

~(a) = {exp (--  i~)}~'=0. (8) 

Let  ~(2) and ~(3) denote the spaces  of all possible l inear  combinations of the functions ~I 2) and r f rom the 
c lasses  r and $(z). with r ea l  coefficients .  

It is known that the class  of functions $(2) is closed in the space L2(0, 2r) of square integTable functions,  
while the class  $(3) is d o s e d  in the space L2(0, ~9 with the weight function exp (-~) [8]. Let  us note that the 
segment  (a, ~ being studied can always be included in the in terval  (0, ~) or  (0, 2~) by a l inear  t ransformat ion .  
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The expediency of introducing each new universa l  c lass  ~(k) is dictated by prac t ica l  r equ i rements  in high- 
speed a lgor i thms:  The p re sence  of a wide s e to f  c l a s ses  , ~(k) pe rmi t s  a significant reduct ion in the number  L of 
t e r m s  in the approximating construct ion (6) for  a given degree  of approximation both because of the selection 
of the class  ~(k)of  functions c loses t  to the approximation and because  of the combination of functions @k of dif-  
f e ren t  c lasses  ~(k). 

According to [9], the solution of the d i r ec t  problem in the spaces  ~(25 and ~(3) is given by the following 
formula  s: 

L 

•  (x~-~)2 ] d~ = A o § 2 4 7  (95 
2(~2 i = l  

1 1 dE --- A~ exp [(icr)2/2] exp (-- ix). (10) C(x, a5= ] f l ~  -| A~exp(--i~) exp 2~ J " ~=0 

The t rans format ion  (35 t r an s fo rms  the spaces  ~(2) and ~(3) into themselves .  

We obtain the approximate  solution of the d i r ec t  problem for  the a rb i t r a ry  function by expanding it (for 
an L selected a pr ior i )  in the components sini~, cos i~ [or exp (-i~)]. The coefficients  of these expansions 
par t ic ipate  dire  ct ly,  according to (9) and (10), in the format ion  of the approximating functions C (x) f rom the 
model spaces  ~(2) and ~3). 

Let  us note that the approximation approach to solving the d i rec t  and inverse  problems of heat  conduc- 
tion was p rac t i ced  e a r l i e r ,  in the papers  [4, 10, 11] for  instance.  

Let  us investigate the problem of solvabili ty of the problem (3)-(5). 

1. We find f i r s t  that for  fixed a the solution of (3) is unique. Upon imposit ion of b i la tera l  constraints  on 
the var ia t ion of C0(~ ) (this should be dictated by the physical  crux of the problem) the inverted problem (3) mean-  
while becomes  c o r r ec t l y  formulated [12]. 

2. For  unknown ~and no constraints  (5), Eq. (3) has a nondenumerable set  of solutions. 

Two different  dis tr ibut ions - 
L. 

C~o ') (~) = A(o I) § ~.~ ,• sin i~ ~- A~'. cos i~), 
i = l  

Lz 
~2) = A(02) ~,A(~-) , AI-~ (LI>L2) Co (~) § t~2i-, sin i~ = ~2i _ 

l=1 

- are  t r a n s f o r med  by using the integral  t r an s fo rm  (3) into the same function C(x) E ~(2) if and only ff 

A~ 1) exp [-- (iaa)2/2] ---- A~ ~'~ exp [-- (i~)z/2], (11) 

A~')-----0, i = 0 ,  L~, ] = L 2 +  1, L r 

The function C(x)~ ~(3) is the mapping of the two dis tr ibut ions 
L~ L.. 

C(01) (~) = ~ A}') exp (-- ~), C(0 ~) (~.) = ~ A~ ~) exp (-- ~) (L~ < L~) 
i=0 i=0 

only in the case 

A~ 1) exp [(ig15~/2] = A~ 2) exp [(ig~)2/2], (12) 

A~I~--O, i=O, L~, ]= L~§ I, L,. 

The relat ions (115 and (12) de te rmine  a nondenumerable set  of solutions of the inverse  problem (3) in the spaces  
(2) and ~' (3). 

3. Now let  the inverse  problem (3) be solved in ~(2) and ~(3) under the constra ints  (5). Without l imiting 
the general i ty ,  le t  us consider  the value of L to be known. Let  us consider  the c lass  e(~). Having been ~ven  
an a r b i t r a r y  value of a= a0, le t  us  expand the function C(x, a0) in the components  r = exp [(ia0)2/2]exp ( - i x )  (i = 
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0, L) (without a remainder) ,  and le tus  thereby determine the unique solution C0(}, %) of (3)for fixed:a~. In the 
general  case the curve C0(}, ~0) does not pass  through the point (40, CIU)) and therefore  does not lJelong to the 
set  {clt)(}, at),  {Bi(at)} i = 0-~}tET of the solutions of problem (3)-(5), whose number is denoted by the sub- 

. P . 

scr ip t  t ,  running through the subscript  set  T; the coefficients are denoted as B i. 

The following equality holds: 

L 

Z exp (-- ~o) [Bi ((~,) --  A~ (%)] + Co (~G, ~) --  C(~ ---- O. (13) 
i = 0  

By means  of (12), le t  us  express  the unknown B i in (13) in t e rms  of the des i red  ~t and the known A i and a0; 
hence,  w e  obtain an equation for a t 

L 

i = 0  

Using the notation 

E A~(eo)exp(--~o){exp[ i~(o~--a~)2 ] --1} + Co(~o, %) -c(~ = 0. (14) 

L 

Ku = --  ~ A~ (%) exp (-- ~)  ~- C~ (~0, %) --  CC~ (15) 
i=0 

Ki = Ai (%) exp (-- ~o) exp ((io0)~/2) (i = I, L), (16) 

we ar r ive  at the algebraic equation 

L 

K~y ~" =0, y = exp (-- ~/2). (17) 
i=0 

Let us determine its roots; they will not be greater than L 2. Let us extract the real roots which satisfy the 
condition 0 < y -< 1. Let these be Yl, Y2 . . . . .  Ys; s - L 2. Then the desired G t are defined as G t = ~ -~ 
0, t = 1, s. Substituting the values found for G t in the relationship (12), we obtain all the s of the equally pos- 
sible formal solutions of the problem (3)-i5). 

Therefore, knowledge of the magnitude of the desired function C0(}) at a single point ~0 still does not free 
the solutionof the problem (3)-(5) from uncertainty; however, giving condition (5) in a cardinal manner reduces the 
spectrum of the solutions of (3) by permitting the extraction of a finite number of them (perhaps just one) from the 
nondenumerable set of the latter. Excluding the physically inadmissible solutions for the s solutions found, the 
scope of the uncertainty of the solution can be narrowed still more. 

Analogous deductions are also valid for the space ~(2). 

4. The giving of L 2 constraints (5) at any points }i makes the solution of the problem completely unique. 
Moreover, it is clear that uniqueness of the solution of (3) can be achieved by assuming, in addition to the 
value C (~ given a priori, still another value C (I) of the function C0(~) but a posteriori of the given point 41. 

Now let us construct an algorithm for the approximate solution of the problem (3)-(5). Let us agree to 
denote the true distribution by C(x) as before and the observed and approximate distributions, respectively, by 

C(x) and C*(x). 

Let us consider the direct method of solution based on inversion of (9) and (10). Given a sufficiently large 
L and the value a = ~0 = I ,  let us approximate the function C(x) by the model C*(x, G0) from the space ~(2) or 
~(3). Using the solution C~ (4) found and assuming the value C (0) , we determine all s formal solutions of the 
problem (3)-(5) by the algorithm described above, and we then extract a finite number N of the physically ac- 
ceptable, equally probable, possible solutions in the absence of additional information. 

Since the real class of possible distributions C0(~) is considerably broader than the model classes, the 
method described should refer to algorithms of the solution to inverse problems within the framework of a 
selection method permitting a search for at least one solution of the problem. Let us note that the model 
class may not contain an acceptable solution of the problem (3)-(5) in addition to the case s > 1. 

Comparing the proposed semianalytical method with direct numerical methods, we can state the following. 

1. Annihilation of the need to replace the initial operator by a finite algebraic sum, as the predominant 
majority of numerical algorithms require, raises the stability of the solution to the calculation process. 
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2. To achieve the r equ i red  accu racy  of the approx imat ion ,  the model  function C~(~), for  which the num-  
be r  of f r ee  p a r a m e t e r s  is cons iderably  l e s s  than the number  of points of the d i sc re t e  function needed to a s s u r e  
the same  degree  of approx imat ion ,  can be used.  

3. In the case  of a s t rongly osci l la t ing C(x) when a l a r g e r  L is fo rma l ly  requ i red  because  of the smooth-  
ne s s  of the model  funct ions,  it is  neve r the l e s s  poss ib le  to get used to a cons iderably  s m a l l e r  L,  s ince sect ions  
of the pulse c h a r a c t e r  fo r  the change in C0(~), which a r e  due to local  inhomogenei t ies  of the med ium,  a re  s o m e -  
t i m e s  not of i n t e re s t  for  p rac t i ca l  pu rposes  and a r e  subject  to smoothing.  

By v i r tue  of the Hadamard  i n c o r r e c t n e s s  of the p rob lem (3)-(5), an i nc rea se  in the number  L of p a r a m -  
e t e r s  C~ (~) in the in t e re s t s  of a s su r ing  a m o r e  detai led descr ip t ion  of C0(~ ) inevitably r e su l t s  in instabi l i ty of 
the unregu la r i zed  solution resu l t ing  f r o m  the physica l  c rux  of the p rob lem itself .  However ,  in definite cases  

in t e r fe rence  level  in C'(x)' a dense r eco rd ing  mesh  for  va lues  of C (x), low value of L] the r equ i r emen t  for  [low 
such solutions to obtain rough e x p r e s s - i n f o r m a t i o n  is comple te ly  leg i t imate .  The authors  of [5, !1] a r r i v e d  
a t  a s i m i l a r  deduction re la t ive  to the solution in boundary-va lue  p rob l ems .  

Now, bes ides  (5), le t  it be known that  the curve  C0(~) is included in the in terva l  (Cmin, Cmax) in [a,/31; 
rough m a j o r a n t  boundar ies  for  Cmin and Cma x can a lways be indicated by s ta r t ing  f r o m  physica l  cons ide ra -  
t ions:  Cmi n fiC0(~) -< Cma x, ~ E [a, fl]. Let  us a lso  a s s u m e  the e r r o r s  in the values  C(x) do n o t e x c e e d  some 
given ~ > 0: 1[ C ( x ) - C  (x) l l -  6 in the norm:  [for def in i teness ,  we take the m a x i m u m  deviat ion of C (x) :from C (x) 
as  the norm].  He re  it is convenient to c a r r y  out the solution on the bas i s  of functional p r o g r a m m i n g  methods.  

Let  us init ially cons t ruc t  an a lgor i thm for  fixed a. It  is r equ i red  to solve the following genera l ized  
l inear  p r o g r a m m i n g  p rob lem:  

max IC* (xj)-- C (xj)I = rain (18) 
i=YT~ A~ 

for  a cons t ra in t  in the f o r m  of the equali ty 
L 

A , , ? )  (%o) = C(0) (13) 
i=0 

and a nondenumerable  se t  of cons t ra in t s  of the f o r m  of the inequali t ies  
L 

Cmin ~ ~ Air'k)(~) ~ Cmax, ~ E [(z, 6], (20) 
i=0 

where  n is the number  of points r ecord ing  the f ield ~(x), and the s t ruc tu re  of the function C*(x) is defined by the 
r ight  side of (9) or  (10). 

Formula t ion  of the p rob lem (18)-(20) in a known manner  r educes  to a s tandard  [13], and by vi r tue  of the 
of the domain of va r ia t ion  of the coeff icients  r for  the des i r ed  A i in (20) it can be sc,lved compac tness  by the 

inverse  m a t r i x  method [14]. 

Since L p lays  the pa r t  of a na tura l  r egu la r i za t ion  p a r a m e t e r  [6], in o rde r  to r a i s e  the s tabi l i ty  of the 
solution it is n e c e s s a r y  to se lec t  the l eas t  poss ib le  L = L 0 admit t ing solvabi l i ty  of the p rob lem (18)-(20) under  
the condition 

Ic* (x) - ~ (x)[ ~ 6. (21) 

We find the lower  bound Lmi  n for  L 0 by means  of the absolute  min imiza t ion  of the functional (18) for  va lues  of 
L s ta r t ing  with 0 and growing success ive ly  by one [in other  words ,  by c lar i fy ing the compat ibi l i ty  of the sys t em 
of n two-s ided  inequal i t ies  of the type (21)]. Then the f i r s t  min imum L for  which the functional does not exceed 
6 is indeed Lmi  n with which the solution of the p rob lem (18), (19), (20) mus t  s t a r t  and the growth of L mus t  con- 
tinue in the case  of no a s s u r a n c e  as to compl iance  with condition (21). 

A s imp le r  a lgor i thm for  the solution of the p rob l em with fixed a can be indicated,  for  which we cover  [a, 
f~] by a mesh  {~i}m= 1 and we demand compl iance  with condition (20) only at i ts  nodes.  Rep lacement  of the non- 
denumerab le  se t  of cons t ra in t s  by a finite number  r e su l t s  in the c l a s s i ca l  l inear  p r o g r a m m i n g  p rob l em,  whose 
known methods of solution [15] a re  sufficiently s imp le r  than the inve r se  ma t r i x  method.  Although weakening 
of the cons t ra in t s  (20) can dr ive  the curve C~ (~) beyond admiss ib le  l imi t s ,  i t  is comple te ly  competent  in definite 
c a s e s ,  s ince the boundar ies  of Cmi n and Cmax a r e  usual ly known to the e r r o r  p, and the field C~(5) can be en-  
c losed in the in te rva l  ( C m i n - P ,  Cmax+P)  by c o m p r e s s i n g  the grid.  Moreover ,  i t  is s o m e t i m e s  requ i red  to 
obtain only a qual i ta t ive solution, i .e . ,  to c la r i fy  the pole of condensat ion of the concent ra t ion  without its 
quant i ta t ive es t imat ion .  
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If g is desired,  the solution of the problem can be obtained by varying a in a mesh of values Y = {o~ given 
in some reasonable l imits  and by using the solution of the algorithm for fixed ~ in each cycle. We select gk as 
desired,  for which the solution is achieved for least  L. After the construction of such a C~(~), the possible 
solutions of the problem specified by values of g which do not belong to the mesh Y. must be determined by solv- 
ing an equation of the type (14), and those must be selected which satisfy the constraint (20). 

The problem under investigation can finally be solved by the method of regularization [16] (hence, know- 
ledge of the quantities 6, Cmin, and Cmax is not obligatory), where in place of the traditional mesh functions 
C~(~) functions of the spaces ~(2) and ~I,(~ are used. Approximating the integral operator is not performed and 
the functional to be minimized - 

~[~ (x~) - c* (xj)l 2 + J~" (c* (~))" d~ 
]=I  r 

- for fixed ~ is a quadratic functional in the variables A i. 

The solution of the problem reduces to absolute minimization of this ftmctional in a mesh of values of the 
regularization parameter ~, and the selection of the best of these values can be realized by the principle of 
the quasioptimal parameter [17] without requiring knowledge of 6: 

~ o  = rain {a = ilc~ (~; ~J+1) - c t  (~; ~J)J}, 

~eQ (22) 

where the domain of definition of the function in (22) is the segment [~, ~]. The presence of the constraint (20) 
admits of a more  purposeful selection of ~ and the information (21) of the natural regularization parameter  L. 
Let us note that the regularization algorithm in the problem (3) is used in [18]. 

N O T A T I O N  

C is the concentration; 
D is the coefficient of diffusion; 
C O is the initial distribution of concentration; 
x is a coordinate; 

is a coordinate; 
T is the time. 
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